U8LM1B-WS Acids and Bases Basics

- Name: KEY
- 1. Acids turn blue litmus <u>red</u> while bases turn red litmus <u>blue.</u>
- According to the Arrhenius definition, an acid is a substance that produces <u>H⁺ (hydrogen ions)</u> in dilute aqueous solution.
 For example: HCl (aq) → H⁺ (aq) + Cl⁻ (aq)
- According to the Arrhenius definition, a base is a substance that produces <u>OH⁻ (hydroxide ions)</u> in dilute aqueous solution.
 For example: NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
- 4. There are <u>seven</u> common strong acids. These acids are labeled strong because they completely ionize. The names and formulas of these acids are:

HCI	hydrochloric acid
HBr	hydrobromic acid
HI	hydroiodic acid
HNO ₃	nitric acid
	chloric acid
HCIO ₄	perchloric acid
H ₂ SO ₄	sulfuric acid

5. There are <u>eight</u> common strong bases. They are all hydroxides and their names and formulas are:

lithium hydroxide
sodium hydroxide
potassium hydroxide
rubidium hydroxide
cesium hydroxide
calcium hydroxide
strontium hydroxide
barium hydroxide

- 6. An acid that ionizes very slightly in dilute aqueous solution is classified as a weak acid.
- The name and formula of the most common weak base are <u>NH₃</u>, <u>ammonia</u>. Just like a weak acid, a weak base also partially <u>ionizes</u>.
- 8. All hydroxides that are not strong bases are NOT weak bases, instead they are classified as **insoluble** bases.
- 9. Acids that are composed of two elements, a hydrogen and a non-metal, are termed **binary** acids.
- 10. Acids that are composed of three elements, hydrogen, oxygen and a non-metal are termed <u>ternary or</u> <u>oxy-</u> acids.
- 11. Acids that contain the **<u>COOH (carboxyl)</u>** group are called organic or **<u>carboxylic</u>** acids.
- 12. Among the following acids, HNO₃, HCOOH, HCIO₄, H₃PO₄, CH₃COOH, H₂CO₃, the organic acids are <u>HCOOH and CH₃COOH.</u>
- 13. There are <u>three</u> strong binary acids.
- 14. There are **four** strong ternary acids.

 Classify each of the following compounds as a strong acid (SA), a weak acid (WA), a strong base (SB), a weak base (WB), or an insoluble base (IB):

Ca(OH) ₂	<u>SB</u>			HClO₄ <mark>SA</mark>
CH₃CH₂C	OOH	<u>WA</u>		LiOH <u>SB</u>
NaOH	<u>SB</u>			Cu(OH) ₂ <u>IB</u>
H_3PO_4	<u>WA</u>			$H_2SO_4 \frac{SA}{SA}$
Sr(OH) ₂	<u>SB</u>			H₂S <u>WA</u>
CsOH	<u>SB</u>			HCN <u>WA</u>
НСООН	<u>WA</u>			HF <u>WA</u>
NH_3	<u>WB</u>			LiOH <u>SB</u>
Fe(OH) ₃	<u>IB</u>			H₂SO₃ <u>WA</u>
CH_3NH_2	<u>WB</u>			HNO <u>₃ <mark>SA</mark></u>
HI	<u>SA</u>			Cu(OH) ₂ <u>IB</u>
HCIO	<u>WA</u>			Mg(OH) ₂ <u>IB</u>
HBrO ₂	<u>WA</u>			$H_2CO_3 $ <u>WA</u>

16. According to the Bronsted-Lowry definition, an acid is defined as a proton donor, and a base is defined as

a proton acceptor.

17. List the Bronsted-Lowry conjugate acid base partners in the following reactions:

Acids are in red, bases are in blue. One conjugate "pair" is underlined, the other not.

- a. <u>HNO₃</u> (aq) + H₂O (I) ← → <u>NO₃</u>⁻ (aq) + H₃O⁺ (aq) Nitric acid is a B-L acid, and its conjugate base is the nitrate ion. Likewise, water is the conjugate base of hydronium.
- b. $\underline{H_2O}(I) + \underline{H_2O}(I) \leftrightarrow \underline{H_3O^+}(aq) + OH^-(aq)$

Water is amphoteric, meaning it can be an acid or a base. Its conjugate acid is hydronium, and its conjugate base is hydroxide.

c. <u>NH₃</u> (aq) + H₂O (I) $\leftarrow \rightarrow \underline{NH_4}^{\pm}(aq) + OH^{-}(aq)$

Ammonia is a B-L base, and its conjugate acid is ammonium. Water serves an acid in this instance.

- d. <u>H₃PO₄</u> (aq) + H₂O (I) $\leftarrow \rightarrow$ <u>H₂PO₄²</u> (aq) + H₃O⁺ (aq) Phosphoric acid is a B-L acid, and its conjugate base is the dihydrogen phosphate anion. Water serves a base.
- e. <u>HPO₄²⁻</u> (aq) + H₃O⁺ $\leftarrow \rightarrow \underline{H_2PO_4}^{=}$ (aq) + H₂O (I)

The hydrogen phosphate anion is a B-L base, and its conjugate acid is the dihydrogen phosphate anion. The hydronium ion donates a proton in this reaction to form its conjugate base, water.