The Hydrogen Atom- Supplemental Worksheet

- 1. State the significance of the line spectrum of hydrogen.
- 2. Calculate the energy in each of the following spectral transitions in the hydrogen atom.

a.
$$n = 4 \rightarrow n = 1$$

b.
$$n = 3 \rightarrow n = 2$$

3. What is the minimum uncertainty in the position of an electron (mass = 9.11×10^{-31} kg) traveling at a velocity with an uncertainty of 4.1×10^{7} m·s⁻¹?

- 4. An electron is excited from the ground state to the n = 2 state in a hydrogen atom. Which of the following statements are true? And correct the false statements.
 - a. It takes less energy to ionize the electron from n = 2 than from the ground state.
 - b. The electron is closer to the nucleus on average in the n=2 than from the ground state.
 - c. The first excited state corresponds to n = 2.
 - d. The wavelength of light emitted when the electron returns to the ground state from n=2 is different from the wavelength of light absorbed to go from n=1 to n=2.

5. Fill the following chart

n	1	Orbital Designation	m_l	Number of Orbitals
1				
				1
		2p		
	0			
			-1, 0, 1	
				5
4		4s		
			-2, -1, 0, 1, 2	
			_	

6. Which of the following sets of quantum numbers are allowed?

a.
$$n = 3$$
, $l = 2$, $m_l = -2$

b.
$$n = 1$$
, $l = 1$, $m_l = 0$

c.
$$n = 4$$
, $l = -2$, $m_l = 0$

d.
$$n = 2$$
, $l = 1$, $m_l = 1$

- 7. What is the maximum number of electrons in the s, p, d, and f shells?
- 8. Draw the representations of the s, p, and d orbitals.