

LEWIS STRUCTURES PRACTICE WORKSHEET

Draw the Lewis Structures for each of the following molecules. If you are not sure if your structure is correct, do a formal charge check. You should consult the Lewis structure rules and a periodic table while doing this exercise. A periodic table will be available for the exam, but the list of rules will not be available, so this is a chance to practice using the rules to help you remember them!

1. CH₃Cl

C: central atom

 H_3 : always terminal

$$S = N_{(Needed)} - A_{(Available)}$$

$$C:8$$
 $C:4$

$$H: 3\times 2$$
 $H: 3\times 1$

$$6 - \frac{8}{2}$$
 $6 - \frac{7}{14}$

$$S = 22 - 14$$

$$S = 8$$

$$\#bonds = \frac{8}{2}$$

2. C₃H₈

C's tend to be terminal

 H_8 : must be terminal

$$S = N - A$$

$$N = 40$$
 $A = 20$

$$S = 40 - 20$$

$$\#bonds = \frac{20}{2} = 10 \ bonds$$

3. CH₃OH

C: central atom

 $H_3 \& H$: must be terminal

Needed: 24

Available: 14

Shared = 10

bonds = 5

Used 10 of available 14e⁻ in bonds. Remaining 4e⁻ are to be placed on terminal atoms that have not satisfied octet.

Department of Chemistry University of Texas at Austin

4. CH₂O

C: central atom H_2 : terminal Needed = 20 Available = 12 Shared = 8 # bonds = 4

5. CIF₃

C: central atom Needed = 32 $\underline{Available} = 28$ $\underline{-Shared} = 4$ $\underline{+bonds} = 2$

breaks rule probably expanded octet

After e^- are placed on terminal atoms to satisfy octet, still have 4 available e^- , place on central atom

6. PH₃

P: central atom H₃: terminal atoms

N = 1 A = 8

 $\overline{S=6}$

bonds = 3

After forming bonds, $2e^-$ left, place on central atom

For these don't show S=N-A rule, although it is used to predict # bonds.

7. SO₂

S: central atom

 O_2 : tend not to string together

$$A = 18e^{-}$$

bonds = 3

- 1) satisfied octet on terminal, but still have 2e-, place on central atom
- 2) still need 2 more on central and predicting 3 bonds, so move a pair to make double bond

Department of Chemistry University of Texas at Austin

8. BH₃

B: exception to octet rule, stable with 6e⁻ in valence shell

9. BeF₂

Be: exception to octet rule, stable with 4e⁻ in valence shell

10. KCN

 K^+ : metal cation

CN⁻: polyatomic anion, follows rules for anions

$$Needed e^- = 16$$

Available
$$e^- = 10e^-$$

$$C = 4$$

$$N = 5$$

$$(-) = 1$$

$$10e^-$$

$$\# bonds = 16 - 10 = \frac{6}{2} = 3 bonds$$

$$[K]^{\dagger}[:C = N:]^{-}$$

11. NO₃

N: central atom

 O_3 : tend not to string together

Notice, polyatomic ion add negative charge as one available extra e

 $Available = 24e^{-}$

bonds = 4 bonds

Double bond could be in any of three locations, so resonance!

12. XeO₄

breaks S = N - A rule, must be expanded octet

$$A = 40e^{-}$$

6 extra, so stick on central atom

Kind of crazy!

