

LEWIS STRUCTURES PRACTICE WORKSHEET

Draw the Lewis Structures for each of the following molecules. If you are not sure if your structure is correct, do a formal charge check. You should consult the Lewis structure rules and a periodic table while doing this exercise. A periodic table will be available for the exam, but the list of rules will not be available, so this is a chance to practice using the rules to help you remember them!

1. CH₃Cl

C: central atom

$$H_3$$
: always terminal

 $S = N_{(Needed)} - A_{(Available)}$
 $\frac{N}{C:8}$
 $\frac{A}{C:4}$
 $H: 3 \times 2$
 $H: 3 \times 1$
 $6 - \frac{8}{2}$
 $6 - \frac{7}{14}$
 $S = 22 - 14$
 $S = 8$

#bonds = $\frac{8}{2}$

2. C₃H₈

C's tend to be terminal

$$H_8$$
: must be terminal

 $S = N - A$
 $C: 3 \times 8$
 $C: 3 \times 4$
 $H: 8 \times 2$
 $H: 8 \times 1$
 $N = 40$
 $A = 20$
 $S = 40 - 20$

#bonds = $\frac{20}{2}$ = 10 bonds

3. CH₃OH

C: central atom

 $H_3 \& H$: must be terminal

Needed: 24 Available: 14 Shared = 10

bonds = 5

Used 10 of available 14e⁻ in bonds. Remaining 4e⁻ are to be placed on terminal atoms that have not satisfied octet.

Department of Chemistry University of Texas at Austin

4. CH₂O

C: central atom H_2 : terminal Needed = 20 Available = 12 Shared = 8 # bonds = 4

5. CIF₃

 $C: central \ atom$ Needed = 32 Available = 28 Shared = 4 # bonds = 2

breaks rule probably expanded octet

 $After\ e^-\ are\ placed\ on\ terminal\ atoms\ to\ satisfy\ octet, still\ have\ 4\ available\ e^-, place\ on\ central\ atom$

6. PH₃

P: central atom H_3 : terminal atoms N=1

N = 1 A = 8 S = 6

bonds = 3

After forming bonds, $2e^-$ left, place on central atom

For these don't show S=N-A rule, although it is used to predict # bonds.

7. SO₂

S: central atom

 O_2 : tend not to string together $A = 18e^-$

bonds = 3

- 1) satisfied octet on terminal, but still have 2e-, place on central atom
- 2) still need 2 more on central and predicting 3 bonds, so move a pair to make double bond

Department of Chemistry University of Texas at Austin

8. BH₃

B: exception to octet rule, stable with $6e^-$ in valence shell

9. BeF₂

Be: exception to octet rule, stable with 4e⁻ in valence shell

10. KCN

K⁺: metal cation

 CN^- : polyatomic anion, follows rules for anions

$$Needed e^- = 16$$

Available
$$e^{-} = 10e^{-}$$
 $C = 4$
 $N = 5$
 $(-) = 1$
 $10e^{-}$
bonds = $16 - 10 = \frac{6}{2} = 3$ bonds

$$\left[: C = N : \right]$$

$$\left[K \right]^{+} \left[: C = N : \right]^{-}$$

11. NO₃-

N: central atom

 O_3 : tend not to string together

Notice, polyatomic ion add negative charge as one available extra e

 $Available = 24e^-$ # bonds = 4 bonds

Double bond could be in any of three locations, so resonance!

12. XeO₄

$$S = N - A rule = 40 - 32 = 8e -$$

4 single bonds works for octet but FC is +4 on the Xe in that structure (bad). Using double bonds to oxygens makes all atoms have 0 for FC. So octet expands to 16 on the Xe.