I. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is used as a fuel. Recall that combustion reactions produce carbon dioxide and water.

1. Write a balanced chemical equation for the combustion reaction.

$$
2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

2. How many moles of carbon dioxide are produced in each of the following cases? Include calculations quantifying the number of moles left over for any excess reactants.
a. 2 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 3 mols of O_{2}.

$$
\begin{array}{lll}
2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \times \underset{2}{2 \mathrm{~mol} \mathrm{CO}_{2}} \mathrm{~mol}_{3} \mathrm{OH}^{2} & =2 \mathrm{~mol} \mathrm{CO}_{2} \mathrm{max} & \begin{array}{l}
\text { These reagents are in stoichiometric equivalence, } \\
\text { so both reagents react completely. } \\
0 \text { moles of excess reagent }
\end{array} \\
3{\mathrm{~mol} \mathrm{O}_{z} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3{\mathrm{~mol} \mathrm{O}_{z}}^{2}}}^{2 \mathrm{~mol} \mathrm{CO}_{2} \mathrm{max}} &
\end{array}
$$

b. 2 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 2 mols of O_{2}

$$
\begin{aligned}
& 2 \mathrm{molCH}_{3} \mathrm{OH} \times \underset{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molCH}_{3} \mathrm{~mol}^{2}}=2 \mathrm{~mol} \mathrm{CO}_{2} \max \quad \mathrm{CH}_{3} \mathrm{OH} \text { excess reagent } \\
& 2 \mathrm{~mol}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{~mol} \mathrm{O}_{2}} \quad=1.33 \mathrm{~mol} \mathrm{CO}_{2} \max \quad \mathrm{O}_{2} \text { llimiting reagent } \\
& 2 \mathrm{molO}_{z} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}} \underline{\mathrm{OH}} \quad=1.33 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH} \text { used } \quad 2-1.33=\mathbf{0 . 6 7} \text { moles excess methanol }
\end{aligned}
$$

c. 3 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 3 mols of O_{2}

Perform hypothetical maximum calculations as above. Another way of determining the limiting reagent is to say..." 3 moles of methanol would require 4.5 moles of oxygen. We only have 3 moles of O_{2}, so oxygen must be limiting."
$3 \mathrm{molCH}_{3} \mathrm{OH} \times \underset{2 \mathrm{molO}_{2}}{2 \mathrm{molCH}_{3} \mathrm{OH}}=4.5 \mathrm{~mol} \mathrm{O}_{2}$ required $\ldots \mathrm{O}_{2}$ is limiting
All of the oxygen will react...
$\begin{array}{ll}3 \mathrm{molO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{~mol} \mathrm{O}_{2}} & =2 \mathrm{~mol} \mathrm{CO}_{2} \text { produced } \\ 3 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}} \underline{O} & =2 \mathrm{~mol} \mathrm{CH}\end{array} 3 \mathrm{OH}$ used; 1 mole of excess methanol

d. 88 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 88 g of O_{2}

These problems require you to convert grams using the molar mass before performing steps above. Note: methanol and oxygen have different molecular formulas but happen to have similar molar masses.

$$
\begin{array}{lll}
88 \mathrm{gCH}_{3} \mathrm{OH} \times \frac{1 \mathrm{molCH}_{3}-\frac{\mathrm{OH}}{32 \mathrm{gCH}_{3} \mathrm{OH}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molCH}_{3} \mathrm{OH}}}{}=2.75 \mathrm{~mol} \mathrm{CO}_{2} \max & \mathrm{CH}_{3} \mathrm{OH} \text { excess reagent } \\
88 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}_{2}}{32 \mathrm{gO}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{molO}_{2}} & =1.83 \mathrm{~mol} \mathrm{CO}_{2} \mathrm{max} & \mathrm{O}_{2} \text { limiting reagent }
\end{array}
$$

```
\(1.83 \mathrm{molCO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{2 \mathrm{molCO}_{2}}=1.83 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}\) used
\(88 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times 1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}=2.75 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}\) available -1.83 mol used \(=0.92 \mathrm{~mol}\) excess \(\mathrm{CH}_{3} \mathrm{OH}\)
    \(32 \mathrm{gCH}_{3} \mathrm{OH}\)
```

e. 15 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 12 g of O_{2}
$15 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol}}{32 \mathrm{~g}}=0.47 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ available $\ldots \times\left(3 \mathrm{~mol} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}\right)=0.71 \mathrm{~mol} \mathrm{O} 2$ required
$12 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}}{32 \mathrm{~g}}=$ only $0.375 \mathrm{~mol} \mathrm{O}_{2}$ available.... So O_{2} is limiting.
All of the oxygen will react...
$0.375 \mathrm{molO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{molO}_{2}}=\mathbf{0}=\mathbf{2 5} \mathrm{mol} \mathrm{CO}_{2}$ produced
$0.375 \mathrm{molO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{3 \mathrm{~mol} \mathrm{O}_{2}}=0.25 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ used; $(0.47-0.25)=\mathbf{0} .22$ mole excess methanol
f. 25 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 35 g of O_{2}
$25 \mathrm{~g} \mathrm{CH}_{3} \mathrm{OH} \times \frac{1 \mathrm{~mol}}{32 \mathrm{~g}}=0.78 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ available $\ldots \times\left(3 \mathrm{~mol} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}\right)=1.17 \mathrm{~mol} \mathrm{O}_{2}$ required
$35 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}}{32 \mathrm{~g}}=$ only $1.09 \mathrm{~mol}_{2}$ available.... So O_{2} is limiting.
All of the oxygen will react...
$1.09 \mathrm{molO}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{~mol} \mathrm{O}_{2}}=0.73 \mathrm{~mol} \mathrm{CO}_{2}$ produced
$1.09 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{3 \mathrm{~mol}_{2}}=0.73 \mathrm{~mol} \mathrm{CH}$
II. Propane is by-product of natural gas processing and petroleum refining. It is commonly used as a fuel for engines, oxy-gas torches, barbecues, portable stoves, and residential central heating.
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Note: $\mathrm{C}_{3} \mathrm{H}_{8}$ and CO_{2} have different molecular formulas but happen to have similar molar masses.
a. What mass of CO_{2} is produced when 6.5 g of propane is reacted with $14.2 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}$?

$$
\begin{aligned}
& 6.5 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol}}{44 \mathrm{~g}}=0.15 \mathrm{~mol} \mathrm{C} \mathrm{C}_{8} \mathrm{H}_{8} \text { available } \ldots \times\left(5 \mathrm{~mol} \mathrm{O}_{2} / 1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}\right)=0.74 \mathrm{~mol} \mathrm{O}_{2} \text { required } \\
& 14.2 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}}{32 \mathrm{~g}}=\text { only } 0.44 \mathrm{~mol} \mathrm{O}_{2} \text { available } \ldots . \mathrm{So} \mathrm{O}_{2} \text { is limiting. } \\
& \text { All of the oxygen will react... } \\
& 0.44 \mathrm{~mol} \mathrm{O}_{2} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{44 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=11.7 \mathrm{~g} \mathrm{CO}_{2} \text { produced (theoretical yield) }
\end{aligned}
$$

b. The actual yield of the reaction described above is 8.0 g of carbon dioxide. What is the percent yield?
Percent yield is how much you got out of how much you could theoretically get...

$$
\frac{8.0 \mathrm{~g} \mathrm{CO}_{2}}{11.7 \mathrm{~g} \mathrm{CO}_{2}} \times 100 \%=68 \% \text { yield }
$$

III. Nitrogen dioxide reacts with hydrogen to produce nitrogen and water. When 125 g of nitrogen dioxide are allowed to react with excess hydrogen, the percent yield is 35%. How many grams of each product are actually formed during this process?

$$
\begin{gathered}
2 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
125 \mathrm{~g} \quad \text { x.s. } ? \mathrm{~g} \quad ? \mathrm{~g} \quad \text { given } 35 \% \text { yield }
\end{gathered}
$$

Convert limiting NO_{2} to moles...

$$
125 \mathrm{~g} \mathrm{NO}_{2} \times \frac{1 \mathrm{~mol}}{46 \mathrm{~g}}=2.72 \mathrm{~mol} \mathrm{NO}_{2} \text { reacts }
$$

Calculate theoretical yield of nitrogen, in grams, and take 35\% of that value.

$$
2.72 \mathrm{~mol} \mathrm{NO}_{z} \times \frac{1 \mathrm{molN}_{2}}{2 \mathrm{~mol} \mathrm{NO}_{2}} \times \frac{28 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol}_{2}} \times 0.35=13.3 \mathrm{~g} \mathrm{~N} \text { N produced }
$$

Same for water
$2.72 \mathrm{~mol} \mathrm{NO}_{z} \times \frac{4 \mathrm{molH}_{2} \theta}{2 \mathrm{molNO}_{z}} \times \frac{18 \mathrm{~g} \mathrm{H}}{2}-\frac{\mathrm{O}}{1 \mathrm{~mol}_{2} \theta} \times 0.35=34.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ produced

