I. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is used as a fuel. Recall that combustion reactions produce carbon dioxide and water.

1. Write a balanced chemical equation for the combustion reaction.
2. How many moles of carbon dioxide are produced in each of the following cases? Include calculations quantifying the number of moles left over for any excess reactants.
a. 2 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 3 mols of $\mathrm{O}_{2}$.
b. 2 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 2 mols of $\mathrm{O}_{2}$
c. 3 mols of $\mathrm{CH}_{3} \mathrm{OH}$ react with 3 mols of $\mathrm{O}_{2}$
d. 88 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 88 g of $\mathrm{O}_{2}$
e. 15 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 12 g of $\mathrm{O}_{2}$
f. 25 g of $\mathrm{CH}_{3} \mathrm{OH}$ react with 35 g of $\mathrm{O}_{2}$
II. Propane is by-product of natural gas processing and petroleum refining. It is commonly used as a fuel for engines, oxy-gas torches, barbecues, portable stoves, and residential central heating.
a. What mass of $\mathrm{CO}_{2}$ is produced when 6.5 g of propane is reacted with 14.2 g of $\mathrm{O}_{2}$ ?
b. The actual yield of the reaction described above is 8.0 g of carbon dioxide. What is the percent yield?
III. Nitrogen dioxide reacts with hydrogen to produce nitrogen and water. When 125 g of nitrogen dioxide are allowed to react with excess hydrogen, the percent yield is $35 \%$. How many grams of each product are actually formed during this process?
