U5LM3B-WS Limiting Reagent & Percent Yield

Name: ____

- I. Methanol, CH₃OH, is used as a fuel. Recall that combustion reactions produce carbon dioxide and water.
 - 1. Write a balanced chemical equation for the combustion reaction.
 - 2. How many moles of carbon dioxide are produced in each of the following cases? Include calculations quantifying the number of moles left over for any excess reactants.
 - a. 2 mols of CH_3OH react with 3 mols of O_2 .
 - b. 2 mols of CH₃OH react with 2 mols of O₂
 - c. 3 mols of CH₃OH react with 3 mols of O₂
 - d. 88 g of CH_3OH react with 88 g of O_2
 - e. 15 g of CH_3OH react with 12 g of O_2
 - f. 25 g of CH_3OH react with 35 g of O_2
- II. Propane is by-product of natural gas processing and petroleum refining. It is commonly used as a fuel for engines, oxy-gas torches, barbecues, portable stoves, and residential central heating.
 - a. What mass of CO₂ is produced when 6.5 g of propane is reacted with 14.2 g of O₂?
 - b. The actual yield of the reaction described above is 8.0 g of carbon dioxide. What is the percent yield?
- III. Nitrogen dioxide reacts with hydrogen to produce nitrogen and water. When 125g of nitrogen dioxide are allowed to react with excess hydrogen, the percent yield is 35%. How many grams of each product are actually formed during this process?