1. In order to calculate the percent composition of a compound such as oleic acid, one needs to look up the chemical formula. The percent composition of a sample of 20.0 g oleic acid will be (higher, lower or the same) as a sample of 50.0 g oleic acid.
2. Calculate the percent by mass of phosphorous in sodium phosphate.
$\mathrm{Na}_{3} \mathrm{PO}_{4}$ molar mass $=3(22.99)+1(30.97)+4(16.00)=163.94 \frac{\mathrm{~g}}{\mathrm{~g}} \mathrm{~mol}$

$$
\begin{aligned}
\text { Percent mass }= & \frac{\text { mass of component }}{\text { Total mass }} \times 100 \% \\
& =\frac{30.97 \mathrm{~g} \mathrm{P}}{163.94 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}} \quad \times \quad 100 \%=18.89 \% \text { phosphorous }
\end{aligned}
$$

3. Calculate the percent by mass of nitrogen in ammonium sulfate.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ molar mass $=2(14.01)+2(1.01)+1(32.06)+4(16.00)=126.10 \mathrm{~g} / \mathrm{mol}$

$$
\text { Percent mass }=\frac{28.02 \mathrm{~g} \mathrm{~N}}{126.10 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}} \mathrm{x} \quad 100 \%=22.22 \% \text { nitrogen }
$$

4. Calculate the percent composition of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molar mass }=6(12.01)+12(1.01)+6(16.00)=180.18 \frac{\mathrm{~m} / \mathrm{mol}}{} \\
& \text { Percent } \mathrm{C}=\frac{72.06 \mathrm{~g} \mathrm{C}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times 100 \%=39.99 \% \text { carbon } \\
& \text { Percent } \mathrm{H}=\frac{12.12 \mathrm{~g} \mathrm{H}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times 100 \%=6.73 \% \text { hydrogen } \\
& \text { Percent } \mathrm{O}=\frac{96.00 \mathrm{~g} \mathrm{O}}{180.18 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times 100 \%=53.28 \% \text { oxygen }
\end{aligned}
$$

Note: all percents should total 100% and masses should total up to your total (or molar) mass
5. A substance is 35.7% carbon by mass. How many grams of this substance are needed to obtain 4.50 moles of C?

Figure out how many grams of C you should have: 4.50 moles of $\mathrm{C} \times 12 \mathrm{~g} / \mathrm{mol}=54.0 \mathrm{~g}$ of C
Manipulate percent mass equation to solve for total mass:

$$
\begin{aligned}
\text { Total mass } & =\frac{\text { mass of component }}{\text { Percent mass }} \times 100 \% \\
& =\frac{54.0 \mathrm{~g} \mathrm{C} \times 100 \%}{35.7 \%}=151 \mathrm{~g} \text { of substance needed }
\end{aligned}
$$

6. A substance is 52.02% chlorine and 47.98% zinc by mass. What mass of this substance contains 83.00 g of chlorine?

$$
\text { Total mass }=\frac{83.00 \mathrm{~g} \mathrm{Cl} \times 100 \%}{52.02 \%}=159.6 \mathrm{~g} \text { of substance needed }
$$

