1. What is the percent by mass of a solution made by dissolving 5.25 g of calcium nitrate in 675 g of water?
$5.25 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \times 100 \%=0.771775 \ldots 3$ sig figs $\ldots \mathbf{0 . 7 7 2 \%} \mathbf{C a}\left(\mathbf{N O}_{3}\right)_{2}$
($675 \mathrm{~g}+5.25 \mathrm{~g}$ total)
2. How many grams of NaCl are present in 1250 . g of solution that is $12.00 \% \mathrm{NaCl}$ by mass?
$(12.00 \% / 100 \%) \times 1250 \mathrm{~g} \mathrm{NaCl}=150.0 \mathrm{~g} \ldots 4$ sig figs $\ldots \mathbf{1 5 0 . 0 g ~ N a C l}$
Note: 12.00% can simply be written as 0.1200 .
3. What mass of water is contained in 600 . g of $12.0 \% \mathrm{NaCl}$ solution?
$0.120(600 \mathrm{~g})=72.0 \mathrm{~g} \mathrm{NaCl} \ldots$. the rest must be water, so $600 \mathrm{~g}-72.0 \mathrm{~g}=\mathbf{5 2 8} \mathrm{g}$ water
4. What mass of water must we add to 35.0 g NaCl to make a $12.0 \% \mathrm{NaCl}$ solution?
$0.120=35.0 \mathrm{~g} \mathrm{NaCl} /\left(35.0 \mathrm{~g} \mathrm{NaCl}+\mathrm{Xg} \mathrm{H}_{2} \mathrm{O}\right) \quad \mathrm{X}=256.6666 \mathrm{~g} \ldots 3$ sig figs... 257g water
5. What mass of $12.0 \% \mathrm{NaCl}$ solution contains 35.0 g of NaCl ?

The denominator above represents this situation. $35.0 \mathrm{~g} \mathrm{NaCl}+257 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\mathbf{2 9 2 g}$ solution
6. What mass of 25% calcium chloride solution contains $350 . \mathrm{g}$ of water?

```
\(0.25=\mathrm{Xg} \mathrm{NaCl} /\left(\mathrm{Xg} \mathrm{NaCl}+350 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\)
\(0.25 \mathrm{X}+87.5 \mathrm{~g}=\mathrm{X}\)
\(87.5 \mathrm{~g}=(1-0.25) \mathrm{X}\)
\(87.5 \mathrm{~g}=(0.75) \mathrm{X}\)
\(\mathrm{X}=116.666\)
Total mass of solution \(=117 \mathrm{~g} \mathrm{NaCl}+350 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=466.66 \mathrm{~g} \ldots .2\) sig figs \(\ldots\). 470g solution
```

7. What mass of each calcium chloride and water are required to prepare 350 g of 22.0% calcium chloride solution?
$0.220=\mathrm{Xg} \mathrm{NaCl} /$ (350 g solution)
$\mathrm{X}=77.0 \mathrm{~g} \mathrm{NaCl}$
350 g solution $=77.0 \mathrm{~g} \mathrm{NaCl}+\mathrm{Yg} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Y}=\mathbf{2 7 3} \mathrm{g} \mathrm{H}_{2} \mathrm{O}$
8. A solution is 12% calcium hydroxide. How many moles of calcium hydroxide are dissolved in 250 g of this solution?
$0.12=\mathrm{Xg} \mathrm{Ca}(\mathrm{OH})_{2} /(250 \mathrm{~g}$ solution $)$
$\mathrm{X}=30 \mathrm{~g}(1 \mathrm{~mol} / 74.10 \mathrm{~g})=0.40485 \ldots 2 \mathrm{sig}$ figs $=\mathbf{0 . 4 0} \mathbf{m o l ~ C a}(\mathbf{O H})_{2}$
9. The density of a $15.00 \% \mathrm{NaCl}$ solution is $1.108 \mathrm{~g} / \mathrm{mL}$. How many mL of this solution must we use to obtain 75.00 g NaCl ?

Assume 1 g soln...
$0.15=\mathrm{Xg} \mathrm{NaCl} /$ (1 g solution).... $\mathrm{X}=0.15 \mathrm{~g} \mathrm{NaCl}$ in 1 g soln
$\underline{0.15 \mathrm{~g} \mathrm{NaCl}} \times \underline{1.108 \mathrm{~g} \text { soln }}=0.1662 \mathrm{~g} \mathrm{NaCl}$ per mL soln
1 g soln $\quad 1 \mathrm{~mL}$ soln
$75.00 \mathrm{~g}=0.1662 \mathrm{~g} / \mathrm{mL}(\mathrm{YmL})$
$\mathrm{YmL}=451.2635 \ldots 4$ sig figs... 451.3mL solution
Check: Convert this volume by density to get mass of solution. Multiply this by 0.15 , to get 75.00 g Na in this mass.
10. What is the molarity of a 20.00% solution of NaNO_{3} ? The density of the solution is $1.143 \mathrm{~g} / \mathrm{mL}$.
$\frac{0.2000 \mathrm{~g} \mathrm{NaNO}_{\underline{3}}}{1 \mathrm{~g} \text { soln }} \times \frac{1.143 \mathrm{~g} \text { soln }}{1 \mathrm{~mL} \text { soln }} \times \frac{1 \mathrm{~mol} \mathrm{NaNO}_{3-}}{85.00 \mathrm{~g} \mathrm{NaNO}_{3}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=2.6894 \ldots 4 \operatorname{sig}$ figs... $\mathbf{2 . 6 8 9 M} \mathbf{N a N O}_{3}$
11. What is the density of a 35.0% hydrochloric acid solution, HCl , if it's 11.3 molar?
$\frac{11.3 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{E} \text { soln }} \times \frac{36.46 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1 \mathrm{~g} \text { soln }}{0.350 \mathrm{~g} \overline{\mathrm{HCl}}}=1.177137 \ldots 3$ sig figs $\ldots \mathbf{1 . 1 8} \mathbf{~ g} / \mathbf{m L ~ H C l}$
12. The density of a 16.4 M NaOH solution is $1.43 \mathrm{~g} / \mathrm{mL}$. What is the percent by mass of this solution? You can probably convert 1 L to 1000 mL on your own at this point. $\frac{16.4 \mathrm{~mol} \mathrm{NaOH}}{1000 \mathrm{~mL} \text { solm }} \times \frac{40.00 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NaOH}} \times \frac{1 \mathrm{~mL} \text { solm_ }}{1.43 \mathrm{~g} \text { soln }} \times 100 \%=45.8741 \ldots 3$ sig figs... $45.9 \% \mathbf{N a O H}$

