\qquad KEY

Consider the following chemical equation to answer the questions below.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

1. One molecules of $\mathrm{C}_{3} \mathrm{H}_{8}$ react with five molecules of O_{2} to produce three molecules of CO_{2} and four molecules of $\mathrm{H}_{2} \mathrm{O}$. Coefficients in the balanced chemical equation can be read in terms of molecules or moles.
2. 20 molecules of $\mathrm{C}_{3} \mathrm{H}_{8}$ react with 100 molecules of O_{2} to produce 60 molecules of CO_{2} and 80 molecules of $\mathrm{H}_{2} \mathrm{O}$. Use stoichiometric ratios from the balanced equation.

Ex: 20 molecules of $\mathrm{G}_{3} \mathrm{H}_{8} \quad x \quad \frac{5 \text { molecules of } \mathrm{O}_{2}}{1 \text { molecule of } \mathrm{G}_{3} \mathrm{H}_{8}}=100$ molecules of O_{2}
3. 6.022×10^{23} molecules of $\mathrm{C}_{3} \mathrm{H}_{8}$ react with 3.011×10^{24} molecules of O_{2} to produce 1.807×10^{24} molecules of CO_{2} and 2.409×10^{24} molecules of $\mathrm{H}_{2} \mathrm{O}$.

$$
6.022 \times 10^{23} \text { molecules } \mathrm{G}_{3} \mathrm{H}_{8} \quad \times \frac{5 \text { molecules } \mathrm{O}_{2}}{1 \text { molecule } \mathrm{G}_{3} \mathrm{H}_{8}}=\underset{\text { (change to proper scientific notation) }}{30.11 \times 10^{23} \text { molecules of } \mathrm{O}_{2}}
$$

4. 1 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts with five moles of O_{2} to produce_three moles of CO_{2} and four moles of $\mathrm{H}_{2} \mathrm{O}$. Again, read the coefficients in front of each chemical. These stoichiometric proportions may represent moles or molecules.
5. 5 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts with 25 moles of O_{2} to produce 15 moles of CO_{2} and 20 moles of $\mathrm{H}_{2} \mathrm{O}$. Multiply each coefficient above by the stoichiometric ratio. Example shown below.

Ex: 5 moles of $\mathrm{G}_{3} \mathrm{H}_{8} \quad x \quad \frac{5 \text { moles of } \mathrm{O}_{2}}{1 \text { mole of } \mathrm{G}_{3} \mathrm{H}_{8}}$
6. 44 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts with 160 grams of O_{2} to produce 130 grams of CO_{2} and 72 grams of $\mathrm{H}_{2} \mathrm{O}$. Convert grams to moles by dividing by molar mass of propane. Use stoichiometric proportions as in problem 6. Then multiply the number of moles by the molar mass of each compound. Example shown below.

$$
\begin{aligned}
& 44 \mathrm{gG}_{3} \mathrm{H}_{8} \quad \times \quad \frac{1 \text { ose } \mathrm{G}_{3} H_{8}}{44 \mathrm{gof} \mathrm{G}_{3} \mathrm{H}_{8}} \times \frac{5 \text { mole } \mathrm{O}_{2}}{1 \text { mole } \mathrm{G}_{3} \mathrm{H}_{8}} \times \frac{32 \mathrm{~g} \text { of } \mathrm{O}_{2}}{1 \text { mole of } \mathrm{O}_{2}}=160 \mathrm{~g} \mathrm{O}_{2} \\
& * * \text { Don't forget that significant figures matter! These should all have } 2 \text { sig figs! }
\end{aligned}
$$

7. 176 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ reacts with $\quad 638$ grams of O_{2} to produce 528 grams of CO_{2} and 288 grams of $\mathrm{H}_{2} \mathrm{O}$. Same methods as above in number 6. Three sig figs in this case though.

$$
176 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \text { moles } \mathrm{G}_{3} \frac{H_{8}}{44.11 \mathrm{gof}_{3}} \mathrm{G}_{3} \mathrm{H}_{8}}{} \times \frac{5 \text { mole }_{2}}{1 \text { mole }_{3} \mathrm{H}_{8}} \times \frac{32.00 \mathrm{~g} \mathrm{of} \mathrm{O}_{2}}{1{\mathrm{~mole} \mathrm{of} \mathrm{O}_{2}}^{2}}=638.40 \mathrm{~g} \mathrm{O}_{2}
$$

8. How many moles of carbon dioxide can be produced from the reaction of 12 moles of propane? Same methods as above in number 6. Two sig figs.

36 moles of carbon dioxide
12 moles of $\mathrm{C}_{3} \mathrm{H}_{8} \quad x \quad \frac{3 \text { moles of } \mathrm{CO}_{2}}{1 \text { mole of } \mathrm{C}_{3} \mathrm{H}_{8}}$
9. What mass of oxygen is needed to produce 65 grams of water? 140 g of oxygen
10. How many moles of carbon dioxide can be produced from the reaction of 225 g of propane?

673 g of carbon dioxide
$225 \mathrm{~g} \mathrm{G}_{3} \mathrm{H}_{8} \quad \times \frac{1 \text { moles } \mathrm{C}_{3} \frac{\mathrm{H}_{8}}{44.1 \mathrm{~g} \text { of } \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{3 \text { mole }^{-\mathrm{CO}_{2}}}{1 \text { mole }_{3} \mathrm{H}_{8}} \times \frac{44.0 \mathrm{~g} \mathrm{of} \mathrm{CO}}{2}}{1{\mathrm{~mole} \mathrm{of} \mathrm{CO}_{2}}}=673.47 \mathrm{~g}(3 \mathrm{sig}$ figs $)$
11. What mass of $\mathrm{H}_{2} \mathrm{O}$ is produced from the reaction of 6.3 g of propane? 10.3 g of water
12. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are produced when 2 moles of O_{2} are reacted with excess propane? Oxygen is the limiting reagent
1×10^{24} molecules of water
$2 \mathrm{~mol} \mathrm{O}_{3} \times \frac{4 \text { mole } \mathrm{H}_{2} \underline{\mathrm{O}}}{5 \mathrm{~mole}_{3}} \times \frac{6.022 \times 10^{23} \mathrm{molec} . \mathrm{H}_{2} \underline{\mathrm{O}}}{1 \mathrm{~mole}_{2} \mathrm{H}_{2} \mathrm{O}}=9.635 \times 10^{23} \mathrm{molec} .(1 \mathrm{sig}$ fig $)$

