Consider the following chemical equation to answer the questions below.

$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

- 1. <u>One</u> molecules of C_3H_8 react with <u>five</u> molecules of O_2 to produce <u>three</u> molecules of CO_2 and <u>four</u> molecules of H_2O . *Coefficients in the balanced chemical equation can be read in terms of molecules or moles.*
- 2. 20 molecules of C_3H_8 react with <u>100</u> molecules of O_2 to produce <u>60</u> molecules of CO_2 and <u>80</u> molecules of H_2O . Use stoichiometric ratios from the balanced equation.

Ex: 20 molecules of C_3H_8 x $5 \text{ molecules of } O_2 = 100 \text{ molecules of } O_2$ 1 molecule of C_3H_8

3. 6.022x10²³ molecules of C₃H₈ react with <u>3.011x10²⁴</u> molecules of O₂ to produce <u>1.807x10²⁴</u> molecules of CO₂ and <u>2.409 x10²⁴</u> molecules of H₂O. *Stoichiometric ratios work here too. Ex:*

 $6.022 \times 10^{23} \frac{\text{molecules } C_3 H_8}{\text{molecules } C_3 H_8} \times \frac{5 \text{ molecules } O_2}{1 \frac{\text{molecule } C_3 H_8}{\text{molecule } C_3 H_8}} = \frac{30.11 \times 10^{23} \text{ molecules of } O_2}{(\text{change to proper scientific notation})}$

- 4. 1 mole of C_3H_8 reacts with <u>five</u> moles of O_2 to produce <u>three</u> moles of CO_2 and <u>four</u> moles of H_2O . Again, read the coefficients in front of each chemical. These stoichiometric proportions may represent moles **or** molecules.
- 5. 5 moles of C_3H_8 reacts with <u>25</u> moles of O_2 to produce <u>15</u> moles of CO_2 and <u>20</u> moles of H_2O . *Multiply each coefficient above by the stoichiometric ratio. Example shown below.*

Ex: $5 \text{ moles of } C_3H_8$ x $5 \text{ moles of } O_2$ 1 mole of C_3H_8

6. 44 g of C₃H₈ reacts with <u>160</u> grams of O₂ to produce <u>130</u> grams of CO₂ and <u>72</u> grams of H₂O. Convert grams to moles by dividing by molar mass of propane. Use stoichiometric proportions as in problem 6. Then multiply the number of moles by the molar mass of each compound. Example shown below.

7. 176 g of C_3H_8 reacts with <u>638</u> grams of O_2 to produce <u>528</u> grams of CO_2 and <u>288</u> grams of H_2O . Same methods as above in number 6. Three sig figs in this case though.

 $176 \text{ g-} C_3H_8 \times \frac{1 \text{ moles-} C_2H_8}{44.11 \text{ g-of-} C_3H_8} \times \frac{5 \text{ mole-} O_2}{1 \text{ mole-} C_2H_8} \times \frac{32.00 \text{ g-of-} O_2}{1 \text{ mole-} O_2} = 638.40 \text{ g-} O_2$

Name: ____KEY____

How many moles of carbon dioxide can be produced from the reaction of 12 moles of propane? Same methods as above in number 6. Two sig figs.
36 moles of carbon dioxide

12 moles of C_3H_8 x <u>3 moles of CO_2 </u> 1 mole of C_3H_8

9. What mass of oxygen is needed to produce 65 grams of water? 140 g of oxygen

10. How many moles of carbon dioxide can be produced from the reaction of 225 g of propane?

673 g of carbon dioxide

 $225 \text{ g-}C_3H_8 \quad x \quad \underline{1 \text{ moles-}C_3H_8} \quad x \quad \underline{3 \text{ mole-}CO_2} \quad x \quad \underline{44.0 \text{ g of }CO_2} = 673.47 \text{ g (3 sig figs)} \\ 44.1 \text{ g of }C_3H_8 \quad 1 \text{ mole-}C_3H_8 \quad 1 \text{ mole of }CO_2$

11. What mass of H_2O is produced from the reaction of 6.3 g of propane? 10.3 g of water

12. How many molecules of H₂O are produced when 2 moles of O₂ are reacted with excess propane? Oxygen is the limiting reagent

1 x 10²⁴ molecules of water

 $2 \mod O_3 \times \frac{4 \mod H_2 O}{5 \mod O_3} \times \frac{6.022 \times 10^{23} \mod H_2 O}{1 \mod H_2 O} = 9.635 \times 10^{23} \mod (1 \text{ sig fig})$