CH301
FALL 2011
Vanden Bout/LaBrake
MORE STOICHIOMETRY PRACTICE

1. Consider the following reaction:

$$
4 \mathrm{KO}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

How many moles of KO_{2} are needed to react with 75.0 L of carbon dioxide at $-25^{\circ} \mathrm{C}$ and 215 kPa ?
2. Consider the following reaction:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) How many grams of carbon dioxide are formed when 55.5 g of butane reacts with $45.5 \mathrm{~g} \mathrm{O}_{2}$?
(b) If $\mathrm{P}=135 \mathrm{kPa}$ and $\mathrm{T}=270 \mathrm{~K}$, what is the volume of this amount of carbon dioxide? What is the total final volume of this system?
(c) Starting over, 43.2 L of butane is mixed with 76.0 L of O_{2} at the same pressure and temperature to give an initial volume of 119.2 L . After butane and O_{2} react, the total volume changes, Assuming that the reaction runs to completion, what is the final volume?

