Gas Laws - Supplemental Worksheet

1 atm = 760 mm Hg = 760 torr = 101,325 Pa Molar volume of an ideal gas is 22.42 L at STP.

1. Given h = 5.24 cm in a sealed-tube manometer, calculate the pressure in the flask in torr, pascals, and atmospheres.

$$5.24cm \times \frac{10mm}{cm} = 52.4mm Hg = 52.4 torr$$
$$52.4 torr \times \frac{1 atm}{760 torr} = 0.069 atm$$

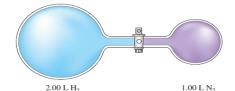
2. Several volume measurements were made at various pressures using 1.0 mol of NH₃ gas at a temperature of 0°C. Which law is being observed? Calculate the law constant for NH₃ at various pressures.

Experiment	Pressure (atm)	Volume (L)
1	0.1300	172.1
2	0.2500	89.28
3	0.3000	74.35
4	0.5000	44.49
5	0.7500	29.55
6	1.000	22.08

Since n and T are constant, we are observing Boyle's law. k = PV Looking at data indicates P & V are inversely proportional.

Exp 1
$$k = 0.1300$$
atm $\times 172.1L = 22.37 L$ atm

$$Exp\ 2\ k = 22.32\ L\ atm$$

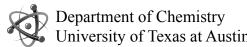

Exp
$$3 k = 22.31 L atm$$

$$Exp\ 4\ k = 22.25\ L\ atm$$

$$Exp \ 5 \ k = 22.16 \ L \ atm$$

$$Exp \ 6 \ k = 22.06 \ L \ atm$$

3. Consider the flask diagramed below with the following pressures 492 torr for H_2 and 0.376 atm for N_2 . What are the final partial pressures of H_2 and N_2 after the stopcock between the 2 flask is opened? (Assume the final volume is 3.00L) What is the total pressure in torr?


Treat each gas separately $P_1V_1 = P_2V_2$ (Boyle's Law)

For
$$H_2$$
: $P_2 = \frac{p_1 v_1}{v_2} = 492 \ torr \times \frac{2L}{3L} = 328 \ torr$
For N_2 : $P_2 = 0.376 \ atm \times \frac{1L}{3L} = 0.125 \ atm \times \frac{760 \ torr}{1 \ atm} = 95.3 \ torr$

$$P_{Total} = P_1 + P_2 = 328 \text{ torr} + 95.3 \text{ torr} = 423.3 \text{ torr}$$

4. Explain absolute zero.

Absolute zero is 0 Kelvin. When extrapolating the volume below this temperature, the volume would be negative, which gases cannot have.

Department of Chemistry
University of Texas at Austin

5. If 32.1 mL of NO₂ gas is completely converted to N₂O₄ gas under the same conditions, what volume will the N_2O_4 occupy? $2NO_2(g) \rightarrow N_2O_4(g)$

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$
, $V_2 = V_1 \times \frac{n_2}{n_1} = 32.1 \text{ mL} \times \frac{1}{2} = 16.1 \text{ mL}$

6. A sample of H₂ has a volume of 9.37 L at a temperature of 0°C and pressure of 2.1 atm. Calculate the moles of H₂ present in the sample.

$$PV = nRT$$
, $n = \frac{PV}{RT} = \frac{(2.1 \text{ atm})(9.37L)}{(0.08206 \frac{L \text{ atm}}{K \text{ mol}})(273K)} = 0.878 \text{ moles}$

7. A 3.4 L sample of methane gas is heated from 9°C to 74°C at constant pressure. Calculate the new volume. R, n, & P are constants.

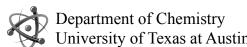
$$\frac{V_1}{T_1} = \frac{nR}{P} = \frac{V_2}{T_2}$$
, $V_2 = \frac{T_2V_1}{T_1} = \frac{347 \ K \times 3.4L}{282 \ K} = 4.18 \ L$

8. CaO is produced by thermal decomposition of CaCO₃. Calculate the volume of CO₂ produced at STP from the decomposition of 129g of CaCO_{3.}

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$129 g CaCO_3 \times \frac{1 mol CaCO_3}{100.1 g CaCO_3} = 1.29 mol CaCO_3$$

1.29 mol CO₂ formed because there is a 1:1:1 mole ratio. Molar volume of an ideal gas is 22.42 L at STP.


1.29 mol
$$CO_2 \times \frac{22.42 L CO_2}{1 mol CO_2} = 28.9 L CO_2$$

OR

The ideal gas law can be used. At STP, T = 273K and P = 1 atm

$$PV = nRT$$

$$V = \frac{nRT}{P} = \frac{1.29mol\ CO_2 \times 0.08206 \frac{L\ atm}{K\ mol} \times 273K}{1atm} = 28.9\ L\ CO_2$$

Department of Chemistry
University of Texas at Austin

9. A 3.598 g sample of manganese metal is reacted with excess HCl gas to produce 2.37 L of H₂(g) at 100°C and 0.834 atm and a manganese chloride compound (MnCl_x). What is the formula of the manganese chloride compound produced in the reaction?

$$n_{H2} = \frac{PV}{RT} = \frac{0.8341 \text{ atm} \times 2.37 \text{ L}}{\frac{0.08206 \text{ L atm}}{K \text{ mol}} \times 373 \text{K}} = 0.0646 \text{ mol } H_2$$

Formula compound MnCl₂

10. A compound contains only nitrogen and hydrogen and is 87.4% nitrogen by mass. A gaseous sample of the compound has a density of 0.977 g/L at 710 torr and 373K. What is the molecular formula of the compound?

Assume 100g 87.4
$$g N \times \frac{1 \text{ mol } N}{14.01 \text{ } g N} = 6.24 \text{ mol } N$$
 Ratio $\frac{6.24}{6.24} = 1$

$$12.6 \ g \ H \times \frac{1 mol \ H}{1.08 \ g \ H} = 12.5 \ mol \ H$$
 Ratio $\frac{12.5}{6.24} = 2$

2 H for every 1 N
$$MWt = \frac{density \times RT}{P} = \frac{\frac{0.977g}{L} \times \frac{0.08206 L atm}{K mol} \times 373K}{710 torr \times \frac{1}{760 torr}} = 32.0 g/mol$$

NH₂ = 16.0a molecular formula is N₂H₄