N. T	
Name:	
i tuille.	

IMF Unit - Lewis Structure, VSEPR Theory, VB Hybridization, MO Theory

Fill in the chart below.

Molecule	N_2	O_2	HF	SeCl ₄
Lewis Structure	:N ≡ N:	:Ö=Ö:	H—Ë:	: Öl :
VSEPR: Electronic geometry of central atom(s)?	Linear	Trigonal Planar	H: Linear F: Tetrahedral	Trigonal Bipyramidal
VSEPR: Molecular geometry of central atom(s)?	Linear	Linear	Linear	See-Saw
Is the molecule polar?	No	No	Yes	Yes
What is the predominate IMF?	Dispersion Forces	Dispersion Forces	H- Bonding	Dipole-Dipol Forces
VB: What types of bonds are in the molecule? What atomic and/or hybrid orbitals make up each bond?	1 σ bond: N(sp) and N(sp) 2π bonds: N(2p) and N(2p)	1σ bond: $O(sp^2)$ and $O(sp^2)$ 1π bond: O(2p) and $O(2p)$	1σ bond: H(1s) and F(sp 3)	4 σ bonds: Se(sp³d) and Cl(sp³)

MO: Find the MO diagram for the molecule in a book or on the website and fill it in.	2p 4 4 4 2p 1	2pA's ### Topy's 2pA's ### Topy's 2sA	The MO diagram for this molecule is more complicated and goes beyond the scope of the class. See this website for more info. http://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html	The MO diagrar for this molecul is more complicated and goes beyond the scope of the classe this website for more info. http://www.ch.ic.ac.uvchemlib/course/mo_theory/main.htm
What is the bond order?	$B0=\frac{1}{2}(8-2)=3$ YES, a BO of 3 predicts	$B0=\frac{1}{2}(8-4)=2$ YES, a BO of 2 predicts		
Does it	the triple bond from	the double bond from		
correspond to	VSEPR and VB.	VSEPR and VB.		
what you				
found in the				
Lewis				
structure and				
VB analysis?	D:	D .:		
Diamagnetic	Diamagnetic	Paramagnetic		
or Paramagnetic?				
i ai aiiiagiietit!				

Fill in the chart below.

Molecule	methane	ethene	ethyne	4-
				aminobenzoic
				acid
	ļ	Ң Д		(Look it up!)
	l н−с॑−н)c=c		О∕ОН
Lewis	i i	Н Н	H-C≡C-H	
Structure	Г П			
				NH ₂
VSEPR:				
Electronic	Tetrahedral	Trigonal	Linear	Trigonal
geometry of		Planar		Bipyramidal
central				
atom(s)?				
VSEPR:				
Molecular	Tetrahedral	Trigonal	Linear	See-Saw
geometry of		Planar		
central				
atom(s)?				

Name:_____

Is the molecule	No	No	No	Yes
polar? What is the predominate IMF?	Dispersion Forces	Dispersion Forces	Dispersion Forces	H- Bonding
VB: What types of bonds are in the molecule? What atomic and/or hybrid orbitals make up each bond?	4σ bonds: C(sp³) and H(1s)	4 σ bonds: C(sp²) and H(1s) 1 σ bond: C(sp²) and C(sp²) 1π bond: C(2p) and C(2p)	2 σ bonds: C(sp) and H(1s) 1 σ bond: C(sp) and C(sp) 2π bonds: C(2p) and C(2p)	1 σ bond: O(sp³) & C(sp²) 1 σ bond: C(sp²) & C(sp²) & C(sp²) 1 σ bond: O(sp³) & C(sp²) 1 σ bond: Cl(sp²) & C(sp²) 1 σ bond: Cl(sp²) & C(sp²) 1 σ bond: N(sp³) & C(sp²) 1 σ bond: N(sp³) & C(sp²) 1 σ bond: N(sp³) & H(1s) 1π bond: O(sp) & C(2p)
MO: Find the MO diagram for the molecule in a book or on the website and fill it in.	$\frac{1}{2p} \frac{1}{2p} \frac{1}{2p} \frac{1}{2p}$ carbon $\frac{1}{2s} - \frac{1}{\sigma} \frac{1}{\sigma} \frac{1}{\sigma} \frac{1}{\sigma}$ hydrogens	The MO diagram for this molecule is more complicated and goes beyond the scope of the class. See this website for more info. http://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html	The MO diagram for this molecule is more complicated and goes beyond the scope of the class. See this website for more info. http://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html	The MO diagram for this molecule is more complicated and goes beyond the scope of the class. See this website for more info. http://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html
What is the bond order? Does it correspond to what you found in the Lewis structure and	BO=½(8-0)=4 YES, a BO of 4 predicts the 4 bond from VSEPR and VB.			

VB analysis?			
Diamagnetic	Diamagnetic		
or			
Paramagnetic?			

The HOMO-LUMO gap of a molecule is equal to $\Delta E = 2$ eV. What wavelength of electromagnetic radiation do you expect it to absorb?

Work:

$$\Delta E = 2eV(\frac{1.60x10^{-19}Js}{1eV}) = 3.20x10^{-19}Js$$

$$E = \frac{hc}{\lambda}$$

$$\lambda = \frac{hc}{E}$$

$$\lambda = \frac{(6.626x10^{-34}Js)(3x10^{8}\frac{m}{s})}{3.2x10^{-19}J} = 6.20x10^{-7}m = 620nm$$

A molecule absorbs light of $\lambda = 490$ nm. What do you predict is the HOMO-LUMO gap of that molecule?

Work:

$$\begin{split} \Delta E_{H-L} &= E_{photon} \\ E_{photon} &= \frac{hc}{\lambda} \\ E_{photon} &= \frac{(6.626x10^{-34}Js)(3x10^8 \frac{m}{s})}{4.9x10^{-7}J} = 4.06x10^{-19}J \\ \Delta E_{H-L} &= E_{photon} = 4.06x10^{-19}J(\frac{1eV}{1.60x10^{-19}J}) = 2.53eV \end{split}$$