\qquad

Thermodynamics Unit - Practice Thermodynamics problems

True/False

T F For an isothermal process, $\Delta \mathrm{S}_{\text {sys }}$ can never decrease.
False. For example vaporization.
T F For all phase transitions, $\Delta \mathrm{H}=0$

False. $\Delta \mathrm{H}$ is never zero for a phase transition

T F A process that doubles the number of microstates of system will double the entropy of the system.

False. Entropy is proportional to the natural \log of the number of microstates.

T F Dropping an eraser from a height of three feet to the floor leads to an increase in the entropy of the Universe.

True. This is a spontaneous procress.

T F The standard entropy of an element in its standard state at 298.15 K and 1 bar is zero.

False. The standard entropy of a perfect crystal of a substance at absolute zero is zero.
T F Conservation of energy tells that $\Delta \mathrm{U}=0$ for all processes.
False. Enegy can be exchanged between system and surroundings. $\Delta \mathrm{U}_{\text {Universe }}=0$.

T F If adding 25 J of heat to a 5.6 g block of iron increases it temperature by 10° C , then adding 25 J of heat to a 2.8 g block of iron will increase its temperature by $20^{\circ} \mathrm{C}$.
True. The heat capacity of a 2.8 g block will be half of that of a 5.6 g block. Therefore the temperature change will be double.

T F When the heat for a process is positive, there is always an increase in temperature of the system.

False. Not for a phase change or chemistry.
\qquad

For each of the following note what you would expect for the entropy of the system, surroundings, and total.

A container of liquid honey (the system) sitting in your kitchen (the surroundings) crystallizes
Δ Ssys $_{\text {Increase }} \quad$ Decrease \quad Stay the Same No Way to Know
Going from liquid to solid
Δ SsurR Increase Decrease Stay the Same No Way to Know

It must be if the total is increasing
$\Delta S_{\text {total }}$ Increase Decrease Stay the Same No Way to Know
Spontaneous so it is increasing

1 mole of an ideal gas initially at a pressure of 10 bar, expanding isothermally against a constant external pressure of 1 bar until mechanical equilibrium is reached.
Δ Ssys Increase Decrease Stay the Same No Way to Know
Volume is going up
Δ Ssurr Increase Decrease Stay the Same No Way to Know
This must be endothermic. Work out and heat in. no change internal energy
$\Delta S_{\text {total }}$ Increase Decrease Stay the Same No Way to Know
Spontaneous.

A 25 g block of solid iron at a temperature $50^{\circ} \mathrm{C}$ is dropped into a glass of ice water that contains 50 g of solid water and 50 g of liquid water at $0^{\circ} \mathrm{C}$? Does all the ice melt?

$$
\begin{aligned}
& C_{P, \text { solid water }}=36 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{C}_{\mathrm{P}, \mathrm{lquud} \text { water }}=75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{C}_{\mathrm{P}, \text { solid iron }}=25.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta_{\text {FUSH }}{ }^{\circ}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\qquad

How much heat is required to cool the block from $50^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (a change of +50 K)?

$$
q=n C \Delta T=\left(\frac{25 \mathrm{~g}}{55.8 \mathrm{gmol}^{-1}}\right)\left(25.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)(50 \mathrm{~K})=562.3 \mathrm{~J}
$$

will that melt all the ice?
How much heat is required to melt 50 g of ice?
$q=n \Delta H_{f u s}=\left(\frac{50 g}{18 g ~ m o l^{-1}}\right)\left(6020 \mathrm{Jmol}^{-1}\right)=16722 \mathrm{~J}$
So the iron block will cool to $0^{\circ} \mathrm{C}$ and there will be lots of ice left over. The heat from the iron is only enough to melt 0.11 moles of water (or 1.8 g)
$n=\frac{q}{\Delta H_{f u s}}=\left(\frac{562.3 \mathrm{~J}}{6020 \mathrm{Jmol}^{-1}}\right)=0.11 \mathrm{~mol}$
(note : for this problem there are several "extra" piece of data that are not needed)

