\qquad

Thermodynamics Unit - Practice Thermodynamics problems

True/False
T F For an isothermal process, \otimes Ssys can never decrease.

T F For all phase transitions, $\otimes \mathrm{H}=0$

T F A process that doubles the number of microstates of system will double the entropy of the system.

T F Dropping an eraser from a height of three feet to the floor leads to an increase in the entropy of the Universe.

T F The standard entropy of an element in its standard state at 298.15 K and 1 bar is zero.

T F Conservation of energy tells that $\Delta \mathrm{U}=0$ for all processes.

T F If adding 25 J of heat to a 5.6 g block of iron increases it temperature by 10° C , then adding 25 J of heat to a 2.8 g block of iron will increase its temperature by $20^{\circ} \mathrm{C}$.

T F When the heat for a process is positive, there is always an increase in temperature of the system.
\qquad

For each of the following note what you would expect for the entropy of the system, surroundings, and total.

A container of liquid honey (the system) sitting in your kitchen (the surroundings) crystallizes

Δ Ssys Increase	Decrease	Stay the Same	No Way to Know
Δ SsurR Increase	Decrease	Stay the Same	No Way to Know
Δ S $_{\text {total }}$ Increase	Decrease	Stay the Same	No Way to Know

1 mole of an ideal gas initially at a pressure of 10 bar, expanding isothermally against a constant external pressure of 1 bar until mechanical equilibrium is reached.

Δ Ssys Increase	Decrease	Stay the Same	No Way to Know
Δ Ssurr Increase	Decrease	Stay the Same	No Way to Know
$\Delta S_{\text {total }}$ Increase	Decrease	Stay the Same	No Way to Know

A 25 g block of solid iron at a temperature $50^{\circ} \mathrm{C}$ is dropped into a glass of ice water that contains 50 g of solid water and 50 g of liquid water at $0^{\circ} \mathrm{C}$? Does all the ice melt?

$$
\begin{aligned}
& C_{P, \text { solid water }}=36 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{C}_{\mathrm{P}, \mathrm{lquid} \text { water }}=75.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{C}_{\mathrm{P}, \text { sold iron }}=25.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \otimes_{\text {FuSH }}{ }^{\circ}=6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\qquad

Enthalpy in $\mathrm{kJ} \mathrm{mol}^{-1}$, entropy and heat capacities in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$

	$\otimes_{\mathrm{f}} \mathrm{H}^{\circ}$	S°		C
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.8	186.3	35.3	
$\mathrm{CO}_{2}(\mathrm{~g})$	393.5	214	37.1	
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242	189	33.6	
$\mathrm{H}_{2}(\mathrm{~g})$	0	130.7	28.8	

What are $\otimes \mathrm{S}_{\text {sys }}, \otimes \mathrm{S}_{\text {surr }}, \otimes \mathrm{S}_{\text {total }}$ when 10 g of carbon dioxides reacts with excess hydrogen to form water vapor and methane gas at a temperature of 600 K . You can assume the reaction goes to completion and that the enthalpy and entropy changes are independent of temperature.

