

## **Thermodynamics Unit - Enthalpy**

1. Calculate the heat evolved from a reaction mixture of 13.4L  $SO_2$  at 1 atm and 273K and 15 g of  $O_2$ .

$$2 SO_2 + O2 \rightarrow 2 SO_3 \Delta H^2 = -198kJ$$

 $2. \ The \ oxidation \ of nitrogen in the hot exhaust of jet engines and automobile engines occurs by the reaction$ 

 $N_2(g) + O_2(g) \rightarrow 2 \text{ NO } (g) \Delta H^2 = +180.6 \text{ kJ}$ 

a. How much heat is absorbed by the formation of 1.55 mol of NO?

b. How much heat is absorbed by the reaction of 5.45 L of nitrogen measured at 1.00 atm and 273K? (R=0.08206 L\*atm\*mol-1\*K-1)



3. Estimate the heat released when ethene ( $CH_2=CH_2$ ) reacts with HBr to give  $CH_3CH_2Br$ . Bond enthalpies are C-H: 412 kJ/mol, C-C: 348 kJ/mol, C=C: 612 kJ/mol, C-Br: 276 kJ/mol, Br-Br: 193kJ/mol, H-Br: 366 kJ/mol.

4. Calculate the standard reaction enthalpy for the reaction of calcite with hydrochloric acid:  $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ . The standard enthalpies of formation for  $CaCO_3(s)$ : -1206.9 kJ/mol,  $CaCl_2(aq)$ : -877.1 kJ/mol, HCl(aq): -167.16 kJ/mol,  $H_2O(l)$ : -285.83 kJ/mol,  $CO_2(g)$ : -393.51 kJ/mol.

5. Which of the following reactions is an enthalpy of formation reaction?

a. 
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

b. 
$$2\text{Fe(s)} + 3/2O_2(g) \rightarrow \text{Fe}_2O_3(s)$$

c. 
$$C_{diamond}(s) + 2H_2(g) \rightarrow CH_4(g)$$

d. 
$$Hg(s) + \frac{1}{2}O_2(g) \rightarrow HgO(s)$$

6. Calculate the change in enthalpy for the combustion of graphite by first stating the combustion reaction and then using the data below.

$$\rm H_2(g) + \frac{1}{2}O_2(g) \xrightarrow{\phantom{i}} \rm H_2O(l); \Delta H = -285.83~kJ/mol$$

$$CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g); \Delta H = 882.00 \text{ kJ/mol}$$

$$C_{graphite}(s) + 2H_2(g) \rightarrow CH_4(g); \Delta H = -74. \text{ kJ/mol}$$

7. Which of  $O_2(g)$ ,  $O_2(l)$ ,  $H_2(g)$ ,  $H_2(l)$ ,  $H_2O(g)$ ,  $H_2O(l)$  have a heat of formation equal to zero?

8. Calculate the reaction enthalpy for the formation of anhydrous aluminum chloride by first stating the formation reaction and then using the data below:

$$2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g); \Delta H = -149 \text{ kJ/mol}$$

$$HCl(g) \rightarrow HCl(l)$$
;  $\Delta H = -74 \text{ kJ/mol}$ 

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g); \Delta H = -185 \text{ kJ/mol}$$

$$AlCl_3(s) \rightarrow AlCl_3(aq); \Delta H = -323 \text{ kJ/mol}$$