TYPE 2 (base buffer)

(both B and BH+ are put into solution)

For a weak base (B) in water: B + H₂O \rightleftharpoons OH⁻ + BH⁺

For a salt, BHX, of the weak base (B) in water:

BHX (s) + H₂O \rightleftharpoons BH⁺ + X⁻ (100% ionization!!!, and X⁻ is some anion of a strong acid - it does nothing)

NOTICE: There are now TWO sources for the ion BH⁺. When there is more than one source for an ion in solution, this is called the COMMON ION EFFECT. Please be VERY aware that the <u>main</u> source for the ion, BH⁺, is from the <u>salt</u> and not from the base. This is the key to understanding TYPE 2 problems.

Now let C_B be the analytical concentration (label) of the weak base B, and C_{BH+} be the label concentration of the salt of the weak base BHX.

	[B]	[OH ⁻]	[BH⁺]
initial	C_{B}	0	$C_{ m BH^+}$
change	- <i>x</i>	+ <i>x</i>	+ <i>x</i>
equilibrium	$C_{\rm B}-x$	x	$C_{\rm BH^+} + x$

Our Equilibrium	"ICE"	Table
-----------------	-------	-------

$$K_{\rm b} = \frac{x \ (C_{\rm BH^+} + x)}{(C_{\rm B} - x)}$$
 Equation 2.1

$$K_{\rm b}C_{\rm B} - (K_{\rm b})x = (C_{\rm BH^+})x + x^2$$

$$0 = x^2 + (K_{\rm b} + C_{\rm BH^+})x - K_{\rm b}C_{\rm B}$$

solve with quadratic formula...

TYPE 2 (base buffer) continued

$$[OH^{-}] = x = \frac{-(K_{\rm b} + C_{\rm BH^{+}}) + \sqrt{(K_{\rm b} + C_{\rm BH^{+}})^2 + 4K_{\rm b}C_{\rm B}}}{2}$$

This equation is the <u>exact</u> solution for calculating the [OH⁻] for any solution made by mixing both a concentration of weak base AND a concentration of the salt of the weak base in water.

NOTE: you should (almost) never ever have to use this equation. Why? continue...

If K_b is small enough (less than 10⁻⁴) and there are REASONABLE concentrations for B and BH⁺, the following assumption can and should be made:

 $C_{\rm B} - x \cong C_{\rm B}$ all this is saying is that x is so small compared to $C_{\rm B}$, it doesn't change it

 $C_{BH+} + x \cong C_{BH+}$ this is saying the same thing except compared to C_{BH+} , it doesn't change it

So that Equation 2.1 shown above becomes

$$K_{\rm b} = \frac{x \ (C_{\rm BH^+})}{(C_{\rm B})}$$

and solving:

$$[OH^-] = x = K_b \left(\frac{C_B}{C_{BH^+}}\right)$$
 Equation 2.2

This equation is the <u>approximate</u> solution for calculating the [OH⁻] for any solution made by mixing both a concentration of weak base (B) AND a concentration of the salt of that weak base (BHX) in water. As long as any REASONABLE concentration of B and BHX are used, this "approximation" is really almost EXACT!!

Notice that it is Equation 2.2 shown above that is the basis for the Henderson-Hasselbalch Equation. The *-log* function is taken on both sides of Equation 2.2 to give the Henderson-Hasselbalch Equation for acids:

$$pOH = pK_b + log\left(\frac{C_{BH^+}}{C_B}\right)$$
 Henderson-Hasselbalch Equation for Bases

Because the BH⁺ usually comes from a salt, sometimes the H-H Equation is written in the following form:

$$pOH = pK_b + log\left(\frac{[Salt]}{[Base]}\right)$$
 Henderson-Hasselbalch Equation for Bases